37,252 research outputs found

    New Formulas and Predictions for Running Fermion Masses at Higher Scales in SM, 2HDM, and MSSM

    Get PDF
    Including contributions of scale-dependent vacuum expectation values, we derive new analytic formulas and obtain substantially different numerical predictions for the running masses of quarks and charged-leptons at higher scales in the SM, 2HDM and MSSM. These formulas exhibit significantly different behaviours with respect to their dependence on gauge and Yukawa couplings than those derived earlier. At one-loop level the masses of the first two generations are found to be independent of Yukawa couplings of the third generation in all the three effective theories in the small mixing limit. Analytic formulas are also obtained for running tanβ(μ)\tan\beta(\mu) in 2HDM and MSSM. Other numerical analyses include study of the third generation masses at high scales as functions of low-energy values of tanβ\tan\beta and SUSY scale MS=MZ104M_S=M_Z-10^4 GeV.Comment: 42 pages RevTeX, including 16 figures. Typos corrected and one reference adde

    Final-State Interaction as the Origin of the Cronin Effect

    Full text link
    Instead of adhering to the usual explanation of the Cronin effect in terms of the broadening of the parton transverse momentum in the initial state, we show that the enhancement of hadron production at moderate pTp_T in d+Au collisions is due to the recombination of soft and shower partons in the final state. Such a mechanism can readily explain the decrease of the Cronin effect with increasing rapidity. Furthermore, the effect should be larger for protons than for pions.Comment: 4 RevTeX pages including 3 figures and 1 table; Some notational changes and a corrected referenc

    Neutrino Masses and Mixings in a Minimal SO(10) Model

    Full text link
    We consider a minimal formulation of SO(10) Grand Unified Theory wherein all the fermion masses arise from Yukawa couplings involving one 126 and one 10 of Higgs multiplets. It has recently been recognized that such theories can explain, via the type-II seesaw mechanism, the large \nu_\mu - \nu_\tau mixing as a consequence of b-tau unification at the GUT scale. In this picture, however, the CKM phase \delta lies preferentially in the second quadrant, in contradiction with experimental measurements. We revisit this minimal model and show that the conventional type-I seesaw mechanism generates phenomenologically viable neutrino masses and mixings, while being consistent with CKM CP violation. We also present improved fits in the type-II seesaw scenario and suggest fully consistent fits in a mixed scenario.Comment: 27 pages, 13 eps figures, revtex4; references added, some minor correction

    Nonequilibrium Dynamics of the Complex Ginzburg-Landau Equation. I. Analytical Results

    Get PDF
    We present a detailed analytical and numerical study of nonequilibrium dynamics for the complex Ginzburg-Landau (CGL) equation. In particular, we characterize evolution morphologies using spiral defects. This paper (referred to as I\rm I) is the first in a two-stage exposition. Here, we present analytical results for the correlation function arising from a single-spiral morphology. We also critically examine the utility of the Gaussian auxiliary field (GAF) ansatz in characterizing a multi-spiral morphology. In the next paper of this exposition (referred to as II\rm II), we will present detailed numerical results.Comment: 21 pages, 7 figure

    Spin polarized STM spectra of Dirac Fermions on the surface of a topological insulator

    Full text link
    We provide a theory for the tunneling conductance G(V)G(V) of Dirac Fermions on the surface of a topological insulator as measured by a spin-polarized scanning tunneling microscope tip for low bias voltages VV. We show that G(V)G(V) exhibits an unconventional dependence on the direction of magnetization of the tip and can be used to measure the magnitude of the local out-of-plane spin orientation of the Dirac Fermions on the surface. We also demonstrate that if the in-plane rotational symmetry on the surface of the topological insulator is broken by an external field, then G(V)G(V) acquires a dependence on the azimuthal angle of the magnetization of the tip. We explain the role of the Dirac Fermions in this unconventional behavior and suggest experiments to test our theory.Comment: 7 pages, 5 Fig
    corecore